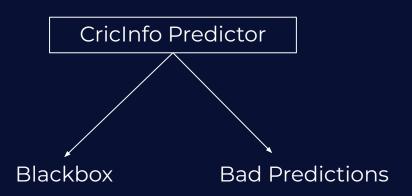
Cricket Final Score Prediction

Arnav Kapoor, Avantika Bansal, Suraj Dayma

Problem Statement

Cricket Score Prediction



Cricket is Complex!

Problem Statement

Context Aware Cricket Score Prediction in ODI Matches

- + Weather
- + Pitch
- + Historical Playoffs
- + Bowler Batter Matchups

Problem Statement

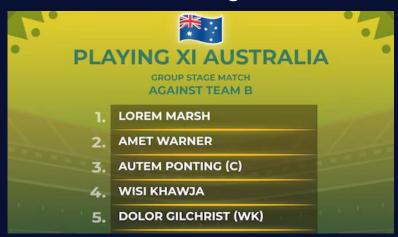
Context Aware Cricket Score Prediction

in ODI Matches

Broadcasts

APPLICATIONS

Betting

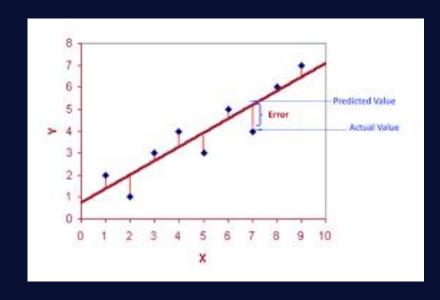


Deciding Lineups

Accessible to Smaller Teams

Performance Metric

- Used RMSE (Root Mean Squared Error) as the performance metric
- Measured average of errors between actual and predicted score
- On average how many runs off was the model



RMSE =
$$\sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \hat{x}_i)^2}$$

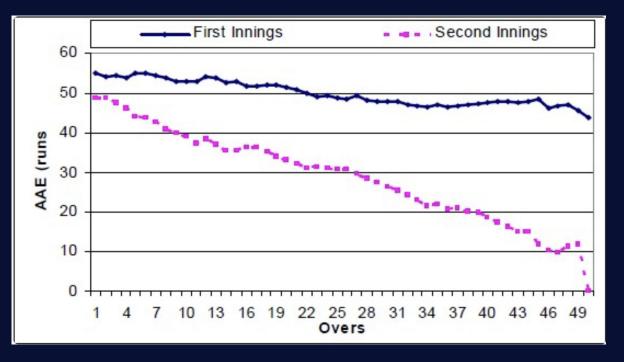
Cricket Score Prediction

Aim: Predict match score for betting.

- Linear regression with DLS method.
- 35 years of ODI matches in dataset.
- Also used pre-match features that included home team, toss winner and historical team strength.

Model: Linear Regression

Inference: Initial use of ML.



Cricket Score Prediction

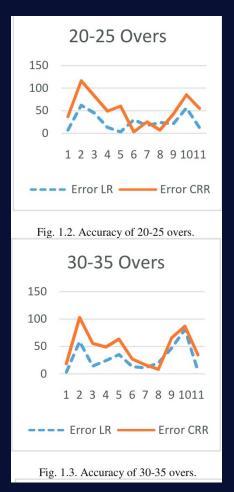
Aim: Predict match score and outcome.

- Used features of current score, over, target, venue, wickets fallen.
- Did not provide standard performance metrics.

Model: Linear Regression, Cricinfo Data.

Inference: Cannot be used as benchmark





Cricket Analysis

Aim: Survey of papers in the thematic of cricket analysis from 2001 to 2021.

- 59 papers were screened.
- Only 5% of the papers focused on score prediction.

Model: N/A

Inference: Limited research in cricket analysis.

T able 4 Jsed ML techniq	ues.	
ML technique	Applications	% of studies
SVM	Umpire's gesture modeling	45
	Fast bowler's action modeling	
	Game's outcome prediction	
	Player-performances classification	
RF	Predicting the winner of the tournament	42
	Predicting the winner of the game	
	Classification of all-rounders	
NB	Predicting the winner of the game	36
	Prediction the Batting and bowling performance	
	Pitch behavior prediction	
Regression	Identification of game's influential factors	31
	Innings' score prediction	
DT	Identification of game's influential factors	26
	Winner prediction	
	Batting and bowling performance prediction	
NN	Game outcome prediction	21
	Cricket-shot classification	
	Game's score prediction	
kNN	Classification of all-rounders	17
	Player-performances classification	
Other	Predicting the player-ranking	14
	Cricket and social media	
XGBoot	Bowler's workload prediction	5
K-Means	Batsmen classification	3

Cricket Score Prediction

Aim: Predict match score and outcome.

- Linear regression with weighted sum of features.
- How did they get the weights? Not Mentioned.
- Score prediction metrics? Not Mentioned.
- Created 'player consistency' metric.

Model: Linear Regression, cricsheets data.

Inference: Cannot be used as benchmark



Match Outcome Prediction

Cricket Score Prediction

Aim: Predict match score.

- Random Forest was giving overfit model.
- Got 26.27 RMSE with Linear Regression.

Model: Linear Regression

Inference: Benchmark of RMSE 26.27

Cricket Score Prediction

Model	RMSE	
XGBoost	5.58	

Satwani, A., Coutinho, K., John, N., Arul Jothi, J.A.: Live cricket predictions for runs and win using machine learning. In: 2024 IEEE 12th International Conference on Intelligent Systems (IS). pp. 1–6 (2024). https://doi.org/10.1109/IS61756.2024.10705216

Model	RMSE	
Random Forest	Close to 0	
Linear Regression	Just over 6	

Suguna, R., Kumar, Y., Prakash, J., P S, D.N., Kiran, S.: Utilizing machine learning for sport data analytics in cricket: Score prediction and player categorization. pp. 1–6 (2023). https://doi.org/10.1109/MysuruCon59703.2023.10396955

Model	RMSE	
Random Forest	5.95	

Rahman Mahin, M.P., Ara, E., Islam, R.U.: Cricket analytics: Odi match score prediction and resource metric modeling using machine learning model. In: 2024 IEEE International Conference on Computing, Applications and Systems (COMPAS). pp. 1–6 (2024). https://doi.org/10.1109/COMPAS60761.2024.10796074

Cricket Score Prediction

Our Aim: Replicate paper.

- Features: ball-by-ball features + weight related features.
- Tested on 2025 matches => RMSE of over 50.

Model: Random Forest.

Inference: Overfit Model; Cannot be used as

benchmark

TABLE II WEIGHT RELATED FEATURES				
remaining_overs Overs remaining				
remaining_wickets Wickets remaining				
weight_overs Over remaining/49.6				
weight_wicket Wickets remaining/10				
merge_weight (weight_overs × remaining_overs)+ (weight_wicket × remaining_wickets)				

TABLE III Training Result

Model vs Metrics	MAE	MSE	RMSE	R ²
Random Forest Regression	0.7270	4.8551	2.2034	0.9986
XGBoost Regression	2.9267	21.3623	4.6219	0.9939
Linear Regression	26.7671	1278.2333	35.7523	0.6409
Elastic net Regression	28.2933	1465.1789	38.2776	0.5884
Polynomial Regression	8.8432	181.7004	13.4796	0.9446

TABLE IV TESTING RESULT

Model vs Metrics	MAE	MSE	RMSE	R ²
Random Forest Regression	1.9482	35.5167	5.9595	0.9899
XGBoost Regression	4.1746	50.5891	7.1406	0.9855
Linear Regression	27.0091	1301.5886	36.0775	0.6309
Elastic net Regression	28.4408	1485.0190	38.5359	0.5789
Polynomial Regression	9.2147	194.8618	13.9592	0.9387

Cricket Outcome Prediction

Aim: Predict match outcome at intervals in the game.

Model: LSTM

- Uses features like batsman, bowler, runs, extras, wickets, innings number, over, and ball number.
- Using an LSTM, they took ball by ball data and calculated win probabilities after every ball.

Inference: LSTMs can be used for cricket analysis.

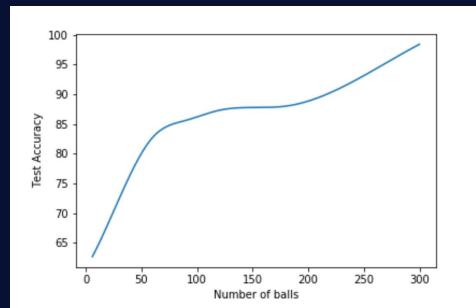
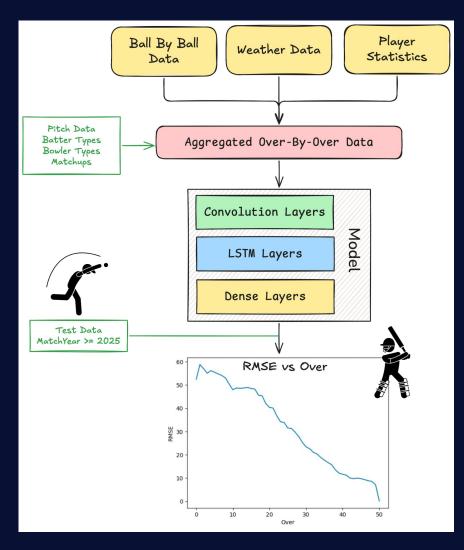


Fig. 3. Test Accuracy variation of our best model after the number of balls played in the match.

Gap and Solution

- No neural network based models used for final score prediction.
- Features like weather, or pitch conditions not taken into account.
- Overfit / Non generalized models.
- Women-specific models.



Our Dataset

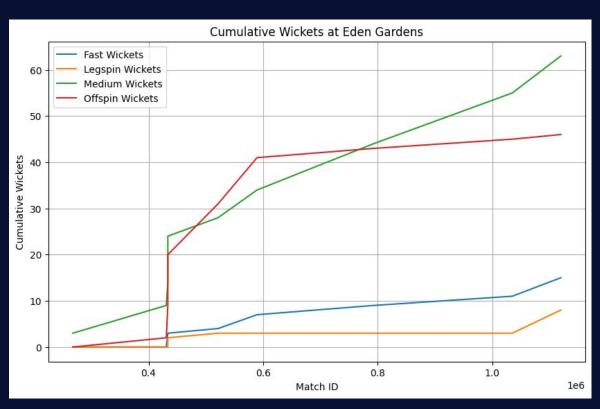
Table 1: List of Features Used in the Model

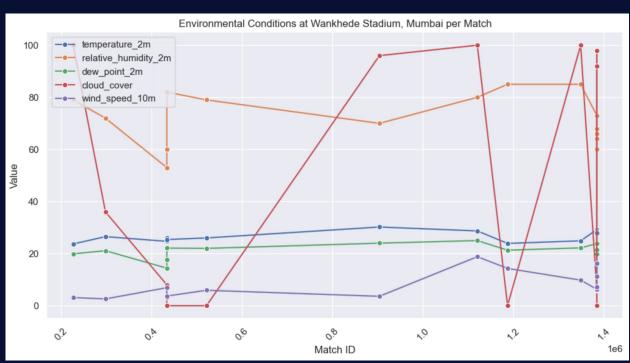
Category	Features
Cricsheet ———Ball-by-ball Data	match_id, innings, over, ball, runs_batter, runs_extras, runs_total, batter_total_runs, batter_balls_faced, bowler_total_runs, bowler_balls_bowled, team_total_runs, wickets_taken, rr, remaining_balls
Team Stats —	win_rate_last_5, avg_runs_last_5, win_rate_last_5_bowl, avg_wkts_last_5
Weather Data	temperature_2m, relative_humidity_2m, cloud_cover, wind_speed_10m, dew_point_2m
OpenMeteo — Pitch Stats —	fast _wickets, legspin _wickets, medium _wickets, offspin _wickets, slow _wickets, unknown _wickets, runs _left _hand, runs _right _hand, sum _fast _wickets, recent _fast _wickets, sum _legspin _wickets, recent _legspin _wickets, sum _medium _wickets, recent _medium _wickets, sum _offspin _wickets, recent _offspin _wickets, sum _slow _wickets, recent _slow _wickets, sum _unknown _wickets, recent _unknown _wickets, sum _runs _left _hand, recent _runs _left _hand, sum _runs _right _hand, recent _runs _right _hand, year
Cricinfo ——Individual Batte	r Stats bat_team_player_1_runs, bat_team_player_1_balls, bat_team_player_1_dismissals, bat_team_player_1_avg, bat_team_player_1_sr, bat_team_player_1_runs_vs_spin, bat_team_player_1_balls_vs_spin, bat_team_player_1_dismissals_vs_spin, bat_team_player_1_runs_vs_pace, bat_team_player_1_balls_vs_pace, bat_team_player_1_dismissals_vs_pace, bat_team_player_1_avg_vs_spin, bat_team_player_1_sr_vs_spin, bat_team_player_1_avg_vs_pace, bat_team_player_1_sr_vs_pace, bat_team_player_1_is_left, bat_team_player_1_is_right
Engineered ——Individual Bowle	er Stats bowl_team_top_bowler_1_runs_conceded, bowl_team_top_bowler_1_balls_bowled, bowl_team_top_bowler_1_wickets, bowl_team_top_bowler_1_bowling_avg, bowl_team_top_bowler_1_bowling_sr, bowl_team_top_bowler_1_economy, bowl_team_top_bowler_1_runs_vs_right, bowl_team_top_bowler_1_balls_vs_right, bowl_team_top_bowler_1_wickets_vs_right, bowl_team_top_bowler_1_runs_vs_left, bowl_team_top_bowler_1_balls_vs_left, bowl_team_top_bowler_1_wickets_vs_left,
Prediction Targe	bowl_team_top_bowler_1_bowling_avg_vs_right, bowl_team_top_bowler_1_bowling_sr_vs_right, bowl_team_top_bowler_1_economy_vs_right, bowl_team_top_bowler_1_bowling_avg_vs_left, bowl_team_top_bowler_1_bowling_sr_vs_left, bowl_team_top_bowler_1_economy_vs_left, bowl_team_top_bowler_1_is_spin, bowl_team_top_bowler_1_is_pace ets innings_total_score, over_total_score, next_over_total_score

Data Processing Pipeline

- 65 features for ODI matches from 2005 2025 for top 9 teams
- Ball by Ball data from cricksheets in JSON form, converted into CSV format
- Extracted data for game state like number of balls, runs and wickets, run rate, required run rate
- Collected or derived pitch, weather and team rolling stats
- Web scraped data from espn cricinfo for player details like their batting and bowling style
- Combined into a final CSV file

Data Processing Pipeline



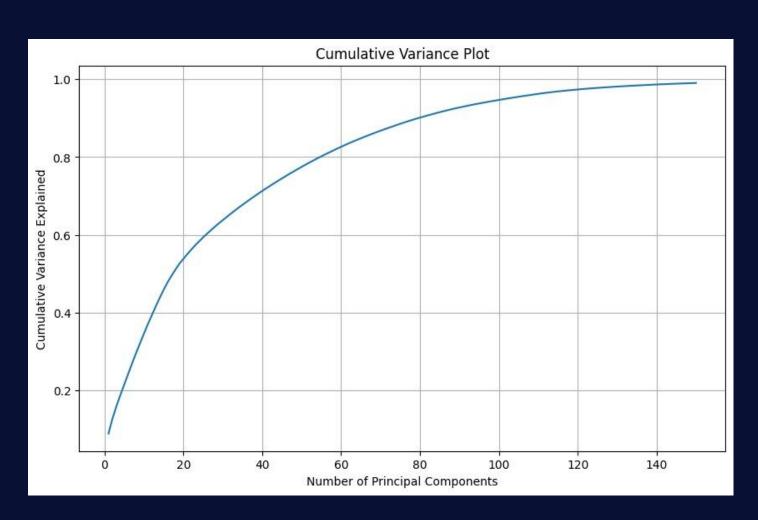


Pitch Data (Bowling)

Weather Data

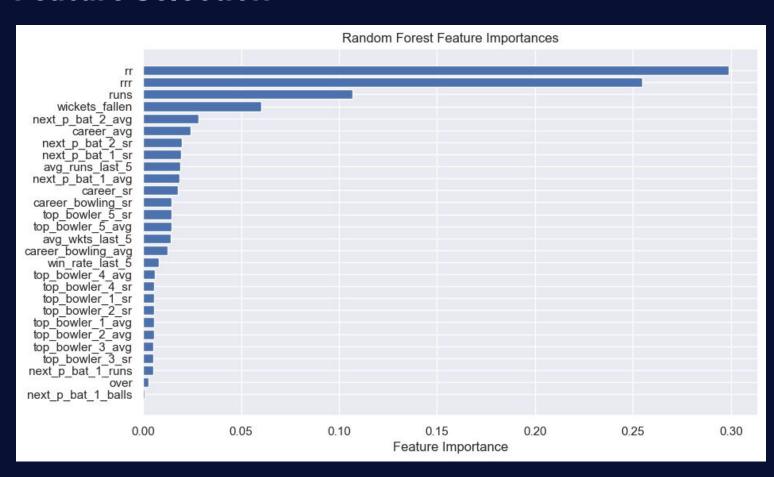
Feature Selection

- Standardisation and normalisation of feature values
- Principal Component
 Analysis to identify the most relevant features



Feature Selection

- Random Forest Regression with 32.8 RMSE
- Data points sampled every 10 overs.



Dataset Variants

Bare Bones Dataset

With Player Stats

With Pitch/Weather

- Game state
- Best bowler data (bowling average)
- Best batsman data (batting average)
- Ball by ball data

- Game state
- Best bowler stats (bowling average)
- Best batsman stats (batting average)
- Ball by ball data
- Player stats

- Game state
- Best bowler stats (bowling average)
- Best batsman stats (batting average)
- Ball by ball data
- Pitch stats
- Weather data

Tested Models

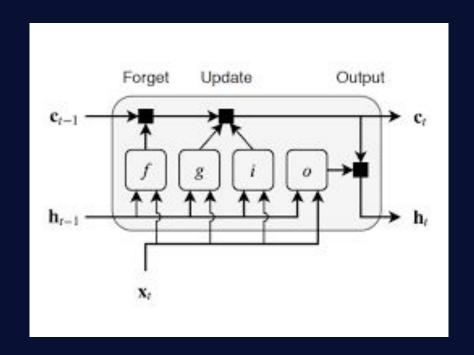
- 1. Classical ML
 - XGBoost
 - Linear Regression
- 2. Deep Learning
 - LSTM

Model	LSTM	XGBoost	Linear Regression
Bare bones model	36.516	54.877	44.643
With player stats	37.363	42.393	45.098
With pitch/weather	39.271	40.854	43.487

Performance Metric is RMSE

Methodology LSTM

- Trained the LSTM with trial and error
- Used a variety of features with each different dataset
- Best performance for Bare Bones dataset

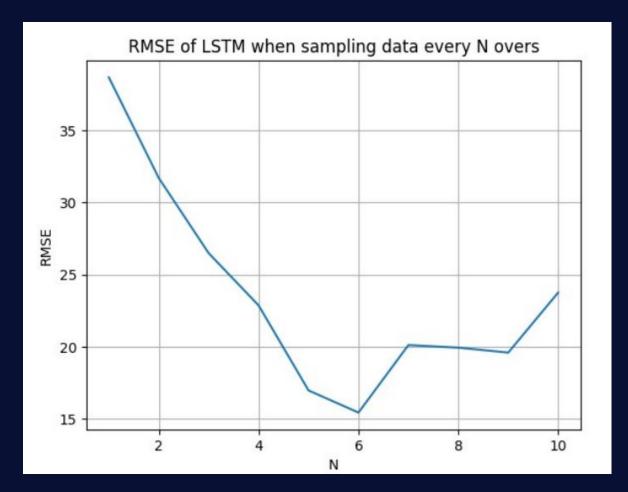


Methodology LSTM

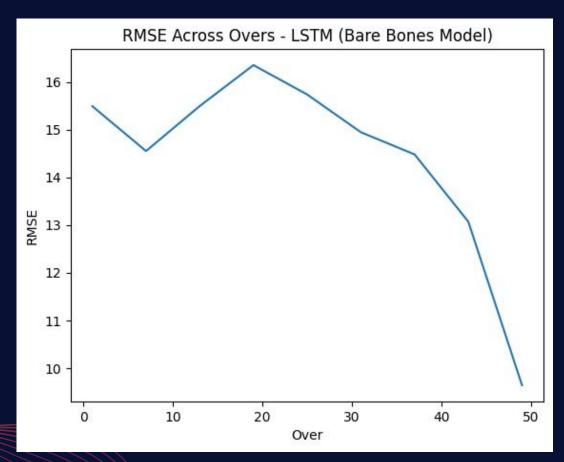
```
model = Sequential()
model.add(Input(shape=(len(allowed overs), X train seq.shape[2])))
model.add(Masking(mask value=-1))
model.add(Conv1D(filters=256, kernel size=7, activation='relu', padding='same'))
model.add(Conv1D(filters=128, kernel size=7, activation='relu', padding='same'))
model.add(Conv1D(filters=64, kernel size=5, activation='relu', padding='same'))
model.add(LSTM(256, return sequences=True))
model.add(LSTM(128, return sequences=True, dropout=0.1))
model.add(LSTM(128, return sequences=True, dropout=0.1))
model.add(LayerNormalization())
model.add(TimeDistributed(Dense(128, activation='relu')))
model.add(TimeDistributed(Dense(64, activation='relu')))
model.add(TimeDistributed(Dense(64, activation='relu')))
model.add(TimeDistributed(Dense(64, activation='relu')))
model.add(TimeDistributed(Dense(32, activation='relu')))
model.add(TimeDistributed(Dense(16, activation='relu')))
model.add(TimeDistributed(Dense(1, activation='linear')))
optimizer = Adam(learning rate=1e-3)
model.compile(optimizer=optimizer, loss='mean squared error')
```

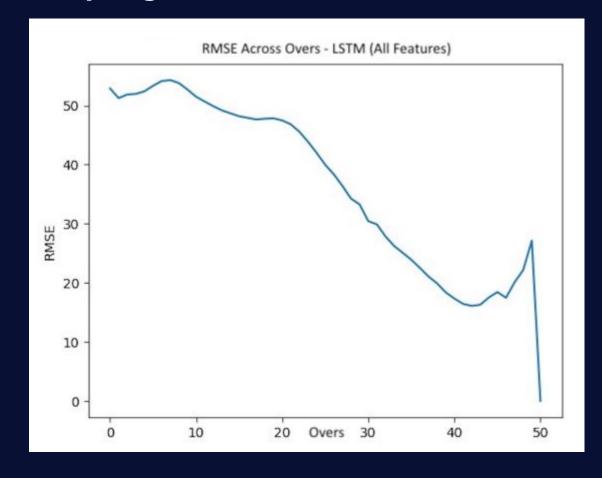
Optimal Sampling

- Sampled the data at every N over to verify best RMSE
- RMSE value dropped down when sampling at every 6th over
- Made 6 models offset by an over to predict every over for the match



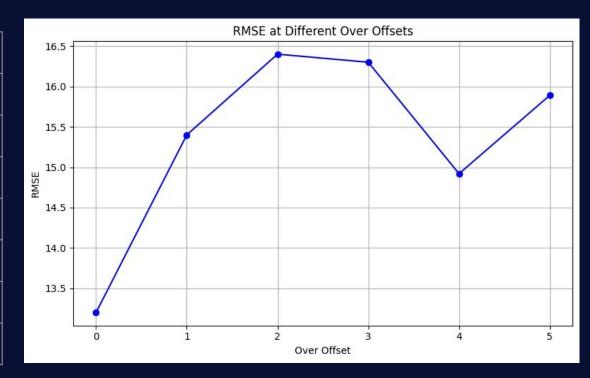
LSTM - 6 Over Sampling





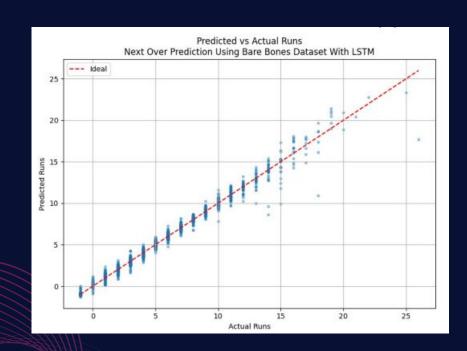
LSTM - Multiple Offset Models

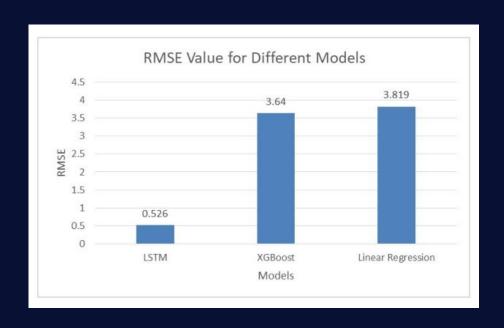
Offset	RMSE	
0	13.2	
1	15.4	
2	16.4	
3	16.3	
4	14.92	
5	15.89	
Average	15.35	



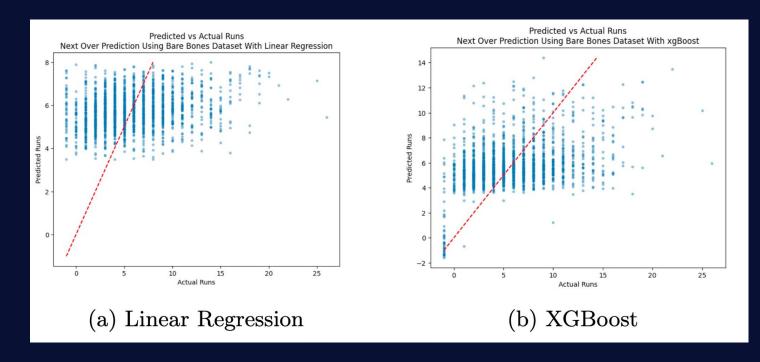
Next Over Prediction

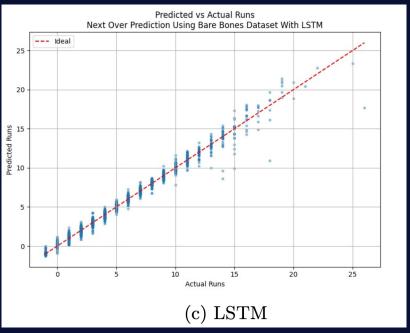
- Also did next over prediction using XGBoost, Linear Regression and LSTM.
- LSTM showed significantly better results





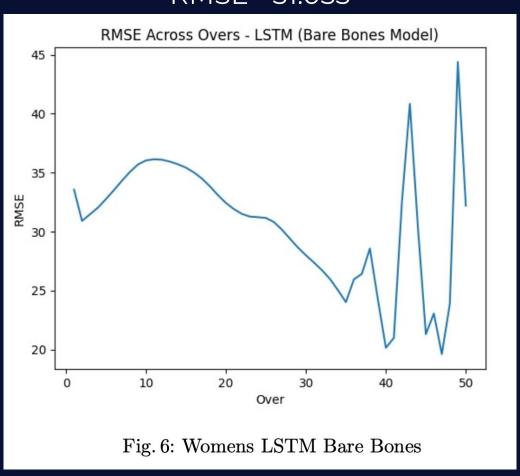
Next Over Prediction





Women Specific Model

RMSE - 31.055



Performance (RMSE)

	XGBoost	Linear Regression	LSTM
Initial models with all features	40.854	43.487	39.271
Models with the bare bones dataset	54.877	44.643	36.516
Tuned Models	27.67	-	15.35
Next Over Prediction	3.64	3.819	0.526

Conclusion

- 1. Beat benchmark model with 26.27 RMSE.
- 2. Next-over prediction.
- 3. Women-specific model.

